Netskope est à nouveau reconnu comme leader dans le Magic Quadrant de Gartner®™ pour les plates-formes SASE. Obtenir le rapport

fermer
fermer
Le réseau de demain
Le réseau de demain
Planifiez votre chemin vers un réseau plus rapide, plus sûr et plus résilient, conçu pour les applications et les utilisateurs que vous prenez en charge.
          Essayez Netskope
          Mettez la main à la pâte avec la plateforme Netskope
          C'est l'occasion de découvrir la plateforme Netskope One single-cloud de première main. Inscrivez-vous à des laboratoires pratiques à votre rythme, rejoignez-nous pour des démonstrations mensuelles de produits en direct, faites un essai gratuit de Netskope Private Access ou participez à des ateliers dirigés par un instructeur.
            Un leader sur SSE. Désormais leader en matière de SASE à fournisseur unique.
            Netskope est reconnu comme le leader le plus avancé dans sa vision pour les plateformes SSE et SASE.
            2X est un leader dans le Magic Quadrant de Gartner® pour les plateformes SASE
            Une plateforme unifiée conçue pour votre parcours
              Sécuriser l’IA générative pour les nuls
              Sécuriser l’IA générative pour les nuls
              Découvrez comment votre organisation peut concilier le potentiel d'innovation de l'IA générative avec des pratiques robustes en matière de sécurité des données.
                Prévention des pertes de données (DLP) pour les Nuls eBook
                La prévention moderne des pertes de données (DLP) pour les Nuls
                Obtenez des conseils et des astuces pour passer à un système de prévention des pertes de données (DLP) dans le nuage.
                  Réseau SD-WAN moderne avec SASE pour les nuls
                  SD-WAN moderne pour les nuls en SASE
                  Cessez de rattraper votre retard en matière d'architecture de réseau
                    Identification des risques
                    Advanced Analytics transforme la façon dont les équipes chargées des opérations de sécurité utilisent les données pour mettre en œuvre de meilleures politiques. Avec Advanced Analytics, vous pouvez identifier les tendances, cibler les domaines préoccupants et utiliser les données pour prendre des mesures.
                        Support technique de Netskope
                        Support technique de Netskope
                        Nos ingénieurs d'assistance qualifiés sont répartis dans le monde entier et possèdent des expériences diverses dans les domaines de la sécurité du cloud, des réseaux, de la virtualisation, de la diffusion de contenu et du développement de logiciels, afin de garantir une assistance technique rapide et de qualité
                          Vidéo Netskope
                          Formation Netskope
                          Grâce à Netskope, devenez un expert de la sécurité du cloud. Nous sommes là pour vous aider à achever votre transformation digitale en toute sécurité, pour que vous puissiez profiter pleinement de vos applications cloud, Web et privées.

                            Five Principles for the Responsible Use, Adoption and Development of AI

                            Mar 13 2024

                            We have been fantasising about artificial intelligence for a long time. This obsession materialises in some cultural masterpieces, with movies or books such as 2001: A Space Odyssey, Metropolis, Blade Runner, The Matrix, I, Robot, Westworld, and more. Most raise deep philosophical questions about human nature, but also explore the potential behaviours and ethics of artificial intelligence, usually through a rather pessimistic lens. Although they are only works of fiction, this goes to show how wary we are about our creations becoming our masters.

                            The democratisation of AI reached a new step when large language models emerged. But for all the praise they have received, they have rung an equivalent amount of alarm bells. We have quickly witnessed flaws inherent in these new AI models, such as hallucinations, or unethical usage including misinformation and copyright infringements, raising concerns and calls from the brightest minds in the space. Their points were that we shouldn’t enter an AI innovation race  without considering the right security and ethical guardrails to mitigate the threat of AI for malicious purposes, or the creation of defective AI systems that could have strong ramifications on our society. 

                            Conversations about regulating AI are happening worldwide, which should help foster healthy progress. Members of the EU are leading this effort, and already agreed the AI Act back in December, which is hoped to influence other regulations globally, comparable to what the GDPR did for global privacy. In November, a number of nations also signed an agreement to make security the number one priority in AI design requirements. 

                            It is reassuring to see proactive governments starting to adopt AI legislation and regulations, but the legislative pace is such that we could still be a couple of years away from them having an actual impact on mitigating the unethical and unsafe use of the technology. In the meantime, organisations need to take the matter into their own hands. More companies than ever will have the opportunity to consume, experiment with, integrate, and develop AI systems in the upcoming months and years, and there are existing principles that should be considered and used as guidelines to do so responsibly. 

                            1. Security and privacy covers four pillars: 
                            • Using AI securely, for example by ensuring that sensitive data is not exposed to public GenAI tools, and privacy is not jeopardised. It also means considering the ethical aspects. Some jurisdictions have started penalising companies using biased AI, which may become an AI regulation standard in the future.
                            • Protecting the organisation against AI attacks. I mentioned that AI is a new ecosystem for threat actors to target, and organisations should keep abreast of this and protect their system and people from the various and emerging threats
                            • Building AI securely by adopting privacy by design and security by design processes. This also includes securing the environment and supply chain in which the AI is being developed. 
                            • Protecting AI models and their training data in production, especially from threats such as data poisoning, which could make the model defective and/or biased. 
                            1. Transparency and explainability are necessary for organisations developing AI. It means that the black box decisions and outputs of the AI system should be easy to explain and demonstrate if necessary. They should also be traceable, and expected. 
                            1. Reflections around bias and fairness are also critical. Organisations developing AI models need to ensure they are built without bias and ensure their fairness in the long-term. This can be done by applying: 
                            • Pre-processing; mitigation methods applied to the training dataset before a model is trained on it
                            • In-processing; mitigation techniques incorporated into the model training process itself. 
                            • Post-processing methods work on the predictions of the model to achieve the desirable fairness. 
                            1. Inclusive collaboration means ensuring various stakeholders and teams (business, risk, legal and compliance, security, public relations, etc.) are engaged in the AI design and oversight process, and the use of AI is assessed across all areas. Having various stakeholders involved contributes to the prevention of bias, and to the quality of the outcome.
                            1. Finally, it is essential to define ownership and accountability for each AI system in use. Whose responsibility is it to ensure that an AI tool continues to operate appropriately and who is accountable when something goes wrong? And what are the potential legal and regulatory implications for the organisation and the accountable individual(s)? 

                            As we wait for more regulations, there will be further development in AI innovation, and these five principles should spawn a race to the top for responsible AI and AI safety which in itself is a differentiator becoming a competitive advantage.

                            author image
                            David Fairman
                            David Fairman is an experienced CSO/CISO, strategic advisory, investor and coach. He has extensive experience in the global financial services sector.
                            David Fairman is an experienced CSO/CISO, strategic advisory, investor and coach. He has extensive experience in the global financial services sector.
                            Connectez-vous avec Netskope

                            Subscribe to the Netskope Blog

                            Sign up to receive a roundup of the latest Netskope content delivered directly in your inbox every month.